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I. INTRODUCTION

The NQO radical 1is thought to play an important intermediate role in
hydrocarbon flames even though it has not been previously observed in a flame
environment. In particular it 1is postulated that NCO is an intermediate in
the conversion of fuel-bhound nitrogen to NO__and N, in rich combustion and in
production of NO_ in hydrocarbon/air flames. Our interest in NQO results
from its possible importance in gun propellant flames. Experimental thermal
decomposition studies of various gun Bropellants show that large quantities of
HCHO, HCN, NZO’ and N02 are produced. Thus flame§ composed of these fuels

i and oxidizers are of interest. Shock tube studies” of the HCN + NO2 system
lead to the conclusion that an important pathway for the reaction involves
NCO. For these reasons it 1s of interest to develop a sensitive technique for
detection of NCO, in situ, in reactive systems.

NOO is the subject of several previous and contemporary spectral
investigations. The A - X system was first identified in low Zesolution
emission spectra upon photolysis of C2H NCOO by Holland, et al. Subsequently,
rotational analysgs of the absorption sgectra have been performed for the A -
X system by Dixon” and by Bolman et al” and for the B“m- X“wsystem by

Tta) ¢.B. Debrow, J.M. Goodings, and D.K. Bohme, '"Flame-Ion Probe of
Intermediates Eeadmg to NO,, in CH -03'—N Flames," Combustion and Flame,
Vol. 39, p. 1, 1980. (b) C. Morley, The Mechaniem of NO Formation from
Nitrogen Compounds in Hydrogen Flamee Studied by Laser Fluorescence,"

18th Symposium (Intermational) on Combustion, The Combustion Institute,
Pittsburgh, PA, p.23, 1981. (e) Y.H. Song, D.W. Blair, V.d. Simineki, and
W. Bartok, ibid, "Conversion of Fixed Nitrogen to v, in Rich Combustion,"
p. 53; and r-eferences therein.

2(a) R.A. Beyer, "Molecular Beam Sampling Mass Spectrometry of High Heating FRate
Pyrolysis: Description of Data Acquisition System and Pyrolysis of HMX in a
Polyurethane Bindevr," ARBRL-MR-02816, 1978 (AD A054328). (b) C.U. Morgan and
R.A. Beyer, "ESR and IR Spectroscopic Studies of HMX and RDX Thermal
Decomposition," 15th JANNAF Combustion Meeting, Newport, RI, September 1978.

3p.a. Pifer and H.E. Holmes, "Kineticse of the HCN + NO, Reaction Behind Shock
Waves," to appear in J. Phys. Chem..

ip. Holland, D.W.G. Style, R.N. Dixon, and D.A. Ramsay, "Emission and
Absorption Spectra of NCO and NCS," Nature, Vol. 182, p. 336, 1958.

OR.N. Dixon, "The Absorption Spectrum of the Free NCO Radical,” Phil. Trans.
Roy. Soc., Vol. 252, p. 165, 1960.

6p.5.H. Bolman, ..M. Brown A. g&rrington, I. Kopp, and D.A. Hamsay, "A Re-
Investigation of the Acgt n Band System of NCO," Proc. Roy. Soc.,
Vol. A343, p. 17, 1975.
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Dixon.’ NCO A - X 3ys§em emission, in addition to that from other species,
has been used by Okabe® to study photolysis of HNCO. In addition to these
early gas phase experiments, NCO_has been studied in matrix isolation
experiments. Milligan and Jacox’ used this approach to investigate the
infrared and ultraviolet absorption spectra. Bondybey and Englishl similarly
studied the laser excited fluorescence (LEF) spectra. More recently, in a
paper mainly concerning a different subject, Reisler et al reported gas
phase radiative lifetimes of several vibrational levels of the A state.
Finally, in a study not yet completed, Sullivan et all? have detected LEF for
both the A and B states of NOO in a flow system. Preliminary measurements .
include A and B state lifetimes, collisional quenching rates for several added
species, and ground vibrational state frequencies.

Recently, spontaneous Raman spectroscopy has been ured to probe
temperature and specles profiles in premixed laminar CHA/NZO flames. 3 During
the course of these experiments intense laser fluorescences resulting from
excitation with various prism selected lines of the probe argon ion laser were
discovered. The radical species producing these fluorescences have been

"R.N. Dixon, "A%n - 2n Electronic Band System of the Free NCO Radiecal,"
Can. J. Phys., Vol. 38, p. 10, 1960.

8y, Okabe3 "Photodissgeiation of HNCO in the Vacuum Ultraviolet; Production
of NCO A%n and NH (A3, elu),” J. Chem. Phys., Vol. 53, p. 3507, 1970.

. 9p.E. M?Zligan and M.E. Jacox, "Matrix Isolation Study of the Infrared and
Ultraviolet Spectra of the Free Radical NCO," J. Chem. Phys., Vol. 47,
p. 5157, 1967.

- JOI{.E'. Bongybey and J.H. English, "Fermi Resonance and Vibrational Relaxation

‘ﬂ' in the A°t State of NCO in Solid Argon," J. Chem. Phys., Vol. 67, p. 2868,
1977.

b

-ty

- 11y, Reisler, M. Mangir, and C. Wittig, "The Kinetice of Fhei Radtcals
L Genemt:ed by IR Laser' Photolysie. II. Reactions of Cg(X £%,), C,(a® T s
: cs(x Ig *) and cN(x%5t) with 0y, " Chem. Phys., Vol. 47, p. 4% 1980.

.

12(a) B.J. Sullivan, G.P. Smith, D.R. Crosley, and G. Black, '"Laser-Induced
Fluorescence Studies of the NCO Molecule," FEasterm States Fall Technical
Meeting of the Combustion Institute, Pittsburgh, PA, Paper 44, October 1981.
(b} B.J. Sullivan, G.P. Smith, and D.R. Crosley, to be published.

137.4. Vanderhoff, R.A. Beyer, and A.J. Kotlar, "Laser Raman Spectroscopy of
Flames; Temperature and Concentrations in CH4/N20 Flames," ARBRL-TR-02388,
January 1982 (AD A112326).
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identified as , g NCO. 14-17 MeasureTgnts involving C2 and CN15
concentrations and CN B°L” energy transfer - 1n the flame afe discussed in
separate papers. This paper addresses the spectral identification and
concentration profile of NOO in the flame. The present work includes a more
detailed description 9f the apparatus and discussion of the results than
appeared previously, Two major issues are addressed. First, the best argon
laser line for probing NCO densities and the transition it pumps are
discussed. Then, an accurate relative density profile is presented along with
an estimate of the absolute peak NCO density for our flame conditions. The
estimate, which is thought to be good to about a factor of 5, places a lower
bound on the NCO density of ~ 3 x 1014 cm =3 in our slightly rich flame.* This
density 1is sufficiently large that possible participation of NCO in the flame
chemistry should be considered.

I1. EXPERIMENTAL
A. Burner

Rich premixed flames of methane and nitrous oxide burning at atmospheric
pressure have been studied using an open channel curved knife edge burner
shown in Figures 1 and 2. The burner was recently designed in this laboratory
for intracavity laser probing through the reaction zone of premixed
flames.18 The burner was made from two aluminum plates with various gaskets
providing the desired channel width. For these experiments the rectangular
channel dimensions were 50 mm by 3 mm. Two small, independent channels run
along each side of the main channel and a flow of N, through these channels
prevents the flame from wrapping around the ends of the knife edges. The
burner produces a curved flame front which follows the radius of curvature of
the knife edges (50.8 mm). 1In typical usage a laser beam passes between the
knife edges parallel to the top of the burner (Figure 1b). The cross section

47.4. Vanderhoff, R.A. Beyer, W.R. Anderson, and A.J. Kotlar, "Ar' Laser
Excited Fluorescence Profilee of Radicals Produced in a CH,/N,0 Flame,"
36th Symposium on Molecular Spectroscopy, Columbus, Ohio, June 1981.

157.4. Vanderhoff, R.A. Beyer, A.J. Kotlar, and W.R. Andereon, "Art Laser
Excited Fluorescence of Cy and CN Produced in a Flame," to appear in
Combustion and Flame.

16y . Anderson, A.J. Kotlar, and J.A. Vanderhoff, to be published.

17y .k, Anderson, J.A. Vanderhoff, A.J. Kotlar, L.J. Decker, and R.A. Beyer,
"Laser Excitation of NCO A - X System Fluorescence in a CH,/N,0 Flame Using
an Argon Ion Laser,” Eastemm States Fall Technical Meeting of the Combustion
Inetitute, Pittsburgh, PA, Paper 47, October 1981.

*Compare thigs to the overall flame molecular deneity of ~3 x 1018 om™3 at
1 atm and the measured flame temperature, 2500 K.

18p,4. Beyer and M.A. DeWilde, "Simple Burmer for Laser Probing of Flames,"
Rev. Sei. Instrum., Vol. 53, p. 103, 1982.
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Figure 2. Cross Section Across Width of Burner. A typical flame position

is shown. The laser beam is circular in cross section. The rectangular area

labeled '"typical probed region' was mapped out by moving the burner back and
forth through the laser beam.
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in Figure 2 shows a typical laser beam ponsition. For the present experiments,
only a length of about 3 mm of the laser beam was viewed by the detection
optics. Since the radius of curvature of the knife edges 1s much larger than
this, the results may be treated using one-dimensional flame approximations.
The curvature is used to minimize index of refraction effects on the laser
beam.

Gas flow to the burner is regulated by rotameters. The fuel oxidizer
mixture is expressed as an equivalence ratio ¢, where ¢ 1is defined as the
actual fuel-oxidizer concentration ratio divided by the stoichiometric fuel-
oxidizer concentration ratio (i.e.,4 [CHQI/[NZO]). The spectroscopic results
for NCO were obtained at different times without an emphasis being placed on
the exact flame conditions. Here the approximate conditions were ¢ = 1.6 with
40% dilution by mole fraction with N,. For the case where the concentration
and temperature profiles and the absolute density estimates were obtained the
flow conditions were carefully measured with a wet test meter. The results
were $ = 1.36 + 0.02 with 457 dilution with N,. The overall premixed gas flow
rate was 1.72 £ 0.05 1/min at 298 XK and 1 atmosphere.

Temperature measurements pearformed on this burner using spontanTgus Raman
spectroscopy indicate that heat losses to the burner are very small, That
is, within experimental error (< 50K) the maximum flame temperatures measured
are the same as obtained from an equilibrium flame temperature calculation
assuming adiabatic conditions.

B. Optics and Electronics

The experimental arrangement for this study is shown In Figure 3. A
nominal 4 watt (all lines) argon fon laser with prism line selection was used
as the excitation source. Its cavity was extended with two highly reflective
mirrors of focal length 1 m and 0.3 m providing an intracavity beam waist of
about 100 um. The intracavity circulating power was about 50 watts on the
strongest lines. Only minor attenuation occurred when a steady CHA/NZO flame
was inserted in the cavity at the beam waist. The burner was placed on its
side with the open channel facing the detection optics. The burner was
attached to a small milling table providing movement in two directions. For
the flame profiles measured in the present work the burner motion was along
the line of sight of the detection optics. This motion was monitored using a
precision dial gauge which reads directly to 0.01 mm.

For coarse spectral resolution (see Fig. 3) two quartz lenses were used
to image a portion of the scattered light onto the 100 um horizontal slits of
a 0.25 m spectrometer mounted on its side. The sampled light came from a
volume approximated by a cylinder of 100 um diameter and 3 mm in length. An
optical multichannel analyzer (OMA) with a silicon intensified vidicon tube
was used to detect the dispersed light. Using a grating of 1180 grooves/mm
approximately 4008 of the spectrum could be observed at one time with this
system. The radiation was accumulated into 500 channels which, when coupled
with the 100 um entrance slits of the spectrometer, provided a resolution,
FWHM, of approximately 3 A. The data was accumulated for equal lengths of
time into the two separate OMA memories first with laser on and then with
laser off conditions. The latter provided a rflame background emission
spectrum. Differencing of these two memories yielded the LEF or Raman
spectrum. Accumulation times for dats repo.rted here were usually less than




*adA39T23 ® uo paurelqo sem Adod paey *aapaodaa
B UZ paMaTa Sem VRO 2yl woaj nding *103923I3p VHO UITM Io3jBWOIYOOUOW W GZ°(Q B JO SITTS 3yl OJUO PIasSsndoyg
Sem uoTIEIpEl paialleds -Iutod Tedo0] K3ITAEORIIUT Iyl e paode]d sem (umoys jou) 2weljy y "aasel uol uolae
ue Jo A3TABRD 3Yl puUIIXD 03 PISN 213M SIOIITW IAEOUOD om] °sniereddy OTuo13lda[d pue Ted13dg ¢ 8ind14




r
St

s
e

{

!

A A

a 3
9.

B sl SR 30 8 SR R 2ot

® ..

ten seconds for LEF and about thirty seconds for Raman scattering data.
Frequently, neutral density filters had to be placed in front of the entrance
slits of the monochromator to keep the real time 'EF signal within the dynamic
range of the OMA, Either LEF or Raman signals from the reaction zone of the
flame could be readily observed in real time on a display oscilloscope. Our
discovery of these unexpected fluorescences may be directly traced to this
capability.

While the 0.25 m spectrometer - OMA detection system had sufficient
resolution to allow identification of C, and CN, 1 the rotational structure
of NCO was much too dense to allow a firm assignment of the spectrum. For
this reason a higher resolution detection system was necessary. Here a 1 m
monochromator with a cooled EMI type 9789 QA photomultiplier tube (PMT) wired
for photon counting replaced the 0.25 m monochromator - OMA system in Figure
3. A chopper operating at 40 Hz was placed inside the laser cavity to provide
laser on and laser off conditions necessary for the elimination of the
background signal. A glass dove prism was placed in front of the entrance
slits to rotate the image 90°. The highest resolution achieved with this
system was 0.17 A FWHM. Amplified pulses from the photomultiplier tube were
passed through a single channel analyzer which discriminated against noise
sources. The output of the single channel analyzer then passed through, in
parallel, two linear gates and two rate meters. The flame background was
removed from the LEF signal by gating the signal to the two rate meters in
synch with the chopper and subtracting the rate meter outputs. The response
time of the ratemeters was such that these signals appeared continuous and
could thus be subtracted easily. The resultant LEF (difference) and flame
emission signals were recorded with a dual strip chart recorder. 1In addition,
the separate ratemeter outputs could be digitized and stored in a PDP 11/34
computer for later analysis.

ITI. RESULTS AND DISCUSSION
A. Interpretation of Spectral Features

As mentioned in the introduction the LEF spectra of NCO were first
observed while measuring temperature and major species profiles in a flame
using spontaneous Raman spectroscopy. Some typical OMA spectra from this
early work!® are shown in Figure 4. The upper trace is a flame emission
spectrum obtained with the laser blockeg. Most of the emission observed is
from the Av = -1 sequence of the CN B2z’ « x25* violet system (4140 - 4220 A)
or from the Av = 0 sequence of the CH A28 + x2n system (4240-4400 A). Higher
resolution scans, shown later, indicate that a small fraction of the emission
in the CH P-branch region is due to NCO. Fluorescence spectra obtained by
subtracting this emission spectrum from the fluorescence plus emission spectra
are shown for seven discrete Ar' laser punp lines. These individual spectra
were normalized and are thus not of similar intensity as depicted in Figure 4.

Inspection of the fluorescence spectra of Figure 4 reveals several
interesting features. First, one of the laser lines, 4545 A, pumps CN.
Fluorescence from the R and P branches of the (1,2) band in the B - X system
results in the twg sharp peaks between 4160 and 4200 A. Studies described in
detail elsewherel” showed that the 4545 A line pumps a (1,3) R 20 transition
of CN. Second, apart from the CN band, all of the fluorescence spectra

14
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- consist of a system of bands in an envelope extending from about 4160 -

4440 A, similar appearing band envelopes are also obtained when pumping with
the 4965 and 5145 A lines (not shown). These spectra look similar to the NCO
emission spectra observed by Okabe” upon photolyzing HNCO. It was foz this
reason that we originally, tentatively, assigned the spectra to NCO.

The fluorescence spectrum from the 4658 A pump line was initially
selected for detailed examination using the I m monochromator for two
reasons. First, the shape of the envelope for the banded system is quite
different and appears narrower than that from the other pump lines. (See Figure
4.) Second, the integrated fluorescence intensity (unnormalized for laser
power) is the strongest for the 4658 A pump line in spite of the fact that
this is one of the weakest laser lines. This intense fluorescence may be
understood by examining earlier fluorescence and absorption work on NCO.
Bondybey and Ehglishlo observed fluorescence of matrix isolated NCO by pumping
to the A%L* 0, 00 ,0) state. The resulting fluorescence to the x2n (1,0°,0)
state occurs between 21,300 - 21,600 cm'l, a range encompassing the 4658 A
laser excitatign line. Additional confirmation that the 4658 A laser line
pumps to the a%c* (0, O0 0) vibrational state comes from Sxperim ntal
absorption results combined with determinations of the X 8 ,0) energy.
Absorption studies” 10 of gas phase NCO show that the A2zt (O 0v,0) «
(o0, ol ,0) transition lies in the frequency region 22,700 - 22, 900 cm 1.
Combining this result 8ith the average of three measurements of the X“n
3 (1,01,0) energy level,”»19:12 1374 cm™ ndicates that the 4658 A line falls
- in the right region for A%t (0,07,0) +« X n (1, 0 O) excitation of NCO. None
» of the other laser lines overlap SuCh a low-lying vibrational band so well,
- explaining the stronger flvorescence observed upon pumping with the 4658 A
. line.

A scan of the fluorescence from the 4658 A pump line using the 1 m
monochromator at 0.60 A FWHM resolution is shown in Figure 5. The top trace
is flame emission resulting primarily from the CH A - X (0,0) P-branch. The
lower trace is the LEF spectrum. The spectra are of similar intensity, as
shown, demonstrating the necessity for subtracting the flame emission. Seven
bandheads from two vibrational bandg 8reviously observed in absorption
experiments on the NCO A ¢+ X system” *” may be readily identified in the
fluorescence spectrum. Thus the previous tentative assignment to NCO is
confirmed. In addition, 8 prominent lines are observed at regularly spaced
- intervals of about 4.5 A in the spectrum. Two of these lines are only

- resolved from the bandheads in scans at the highest resolution available (0.17A
*g FWHM). They are slightly to the violet of the P, and P, bandheads in Fig.
5. This pattern of lines is an indication that the num%er density in a

rotational state of A2L* (0,0¥,0) having quantum number N' = 30 or 31 is much
larger than for any other rotational state, It 1s common in a flame

environment for a rotational level directly pumped by an excitation source in

*- an electronically excited molecule to retain a higher population than nearby
)
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i Figure 4. Flame Emission gnd LEF Spectra from a Slightly Rich CH,4/NoO Flame
- Where the Resolution was 3A FWHM. The spectra have been normalized so that no
. information about relative intensities of LEF from the various argon pump lines
may be obtained from the figure. The top trace is the flame emission. The
other seven traces are LEF spectra resulting from the argon laser pump lines
indicated to the right.
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Figure 5. Flame Emission and LEF Spectrum of NCO Using the 4658 A Laser Line.
The spectra were taken at a resohtion of 0.60 A FWHM. Top trace: Flame
emission arising mainly from the CH A « X system. Some weaker bandheads of

NCO are also visible. Bottom trace: LEF spectrum of NCO in the Av = 0 region.
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9,20

levels. This is demonstrated by fluorescence scans on OH} CH,2l cni6,21

and by indirect evidence from an excitation scan on NH for which tge detector
was blased towards fluorescence from only a few rotational levels.2? This
phenomenon demonstrates that rotational energy transfer in the excited state
is not sufficiently fast to redistribute molefglfs 58’8 Boltzmann distributiou
before they are quenched to the ground state. V7

Evidence that N' = 31 is the level pumped by the 4658 A excitation line
is gixgn in Figures 6 and 7. Under serendipitous conditions argon discharge
lines“” at 4401.02 A and 4400.09 A appeared in the spectrum. A section from
one spectrum at 0.17 A FWHM resolution in which these lines appeared is shown
in Figure 6. These art lines are very close to the prominent Q, line and were
used to calibrate* the prominent line position as 4398.41 A. e position
measured by Dixon’ for Q,31 was 4398.36 A, (Measured line positions and
assignments of Reference 5 and 6 for this band are in excellent agreement.)
Separation between adjacent Q, lines in this region is about 0.21 A, so that
the precision of the calibrat%on is sufficient to rule out other
assignments. Thus, the prominent Q, line is established as Q,p31.

I9. Chan and J.W. Daily, "Laser Excitation Dynamics of OH in Flames,'" Applied
opt., Vol. 19, p. 1357, 1980. —

206.p. omith and D.R. Crosley, "Quantitative Laser-Induced Fluorescence in
OH: Transition Probabilities and the Influence of BEnergy Transfer,”
18th Symposiun (Intermational) on Combustion, The Combustion Institute,
Pittsburgh, PA, p. 1511, 1981.

214 ¢, Eckbreth, P.A. Bonecayk, and J.F. Verdieck, "Investigation of CARS and
Laser-Induced Fluorescence for Practical Combustion Diagnosie," Report No.
EPA - 600/7-80-091, May 1980. Example spectra abstracted from this report
may be found in: A.C. Eckbreth, "Spatially Precise lLaser Diagnostics for
Practical Combustor Probing, " Laser Probes for Combustion Chemistry, edited
by D.R. Crosley, American Chemical Dciety Symposium eries 1%, Washington,
D.C., p. 271, 1980; J.F. Verdieck and P.A. Boncayk, "Laser-Induced Saturated
Fluorescence Investigations of CH, CN and NO in Flames," 18th Symposium
(Internmational) on Combustion, The Combustion Institute, Pittsburgh, PA,

p. 1559, 1981.

22y R. Anderson, L.J. Decker, and A.J. Kotlar, "Concentration Profiles of NH
and OH in a Stoichiometric CHy/Ny0 Flame by laser Excited Fluorescence and
Absorption," to appear in Comgustion and Flame.

23ptomie line positions were obtained from G.R. Harrison, Massachusetts
Institute of Technology Wavelength Tables, M.I.T. Press, Tambridge, WA,
1959,

*I't was discovered that the monochromator scan was not quite linear over long
wavelength regions. The spectra in Figures 5, 7, and 8 were scanned from
Longer to shorter wavelengthe. Towgrds the shorter wavelengths, the scans
are only good to within about *0.54. 'Therefore, high resolution scans were
calibrated using known line positione of argon and CH emission. The
calibration lines were chosen so that only short wavelength scans were
required.

18
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As a crosscheck on the identification of the prominent Q, branch line a
scan at 0.17 A FWHM resolution was made in the reglon of the prominent Q; and
Ry l1ine positions. These positions were checked against nearby known CH line
positioni (see Figures 5 and 7) obtained from the work of Moore and
Broida. If the assignment of N' = 31 as the pumped level is correct, the
prominvnt Q) and R; branch lines would be Q,31 and R,;30. The CH P.418 and

Pycl8 + P dl9 were used to calibrate the position of the Q; line as 4383. 89A
while the CH P.416 and P, .15 were used to calibrate ghe position of the R
line* as 4379. 21 A, The positions measured by Dixon’ for Q,31 and R;30 were
4383.91 and 4379.22 A, respectively. Separations between aéjacent Q, and R
lines near N' = 31 are about 0,10 and 0.40 A, respectively. Thus, t#e Q line
position 1s most consistent with an assignment of Q,31. However, the
calibration is not precise enough to rule out Q30 or Q132 as the lines are so
dense near the bandhead. This 1is not the case f~~ the R line as it is not
near a bandhead. The separations between R; lines are large enough to allow
firm identification of the prominent line as R,30. Therefore, all of the
prominent lines of Figure 5 must arise from N' = 31. Those lines not
identified by direct calibration were labeled on the basis that N' = 3] is the
1eve1 pumBed by the laser. A full high resolution scan (0.17 A FWHM) of the

A2rt (0,0V,0) + X2n (0, 0! ,0) fluorescence using the 4658 A laser pump line is
shown in Figure 8. The series of small, regularly spaced peaks about the
prominent Q, line is due to the Q, branch progression.** The similar Q{
branch grogression is not well resolved because the Q) lines are more closely
spaced,

Ef forts were made to identify the rotational branch pumped by the 4658 A
laser line and, hence, the (N", J") level from which pumping occurs. For this
purpose, spectra were taken at 0.60 A resolution in the region of the laser
excitation line. An example is shown in Figure 9. The strong peak at 4658 A
is due to scattered laser light. The peak drops to zero at line center
because of saturation of the detection electronics. Three pairs of peaks
positioned symmetrically about the pump line are grating ghosts and should be
disregarded. _The remainder of the spectrum is complicated by LEF from the
Swan system.1 Here the 4658 A line excites in the (2,1) band. Because the
C, emission is much stronger than the NCO emission in this region we were able
to compare the emission and fluorescence spectra ascribing peaks which occur
in both to Cy. Grating ghosts were also eliminated from consideration. The
remaining peaks (except for the laser line) are designated with arrows in
Figure 9.

24c.E. Moore and H.P. Broida, "CH in the Solar Spectruwm,” J. Res. Nat. Bur.

Stand., Vol. 634, p. 19, 1959.

*In the text, F-number subscripts for CH transitions are dropped for
convenience since spin-orbit components were overlapped even at our
highest available resolution.

**t [irst glance the reproducibly larger eize of the Q432 compared to Q430 in
Flgure 8 suggests prejeneatzal rotational up—tranafer, which seems
unreascnable. The large size of Q432 ig probably due to overlap with the
5910. The laser line width is much “too narrow to pump N' = 31 and 32

simul taneously .
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Figure 8. High Resolution Fluorescence Spectrum of the NCO A" (0, 0, 0) «
X2 (0, 01, 0) band Excited by the 4658 X Laser Line. Wavelengths are only
approximate due to irregularity in the monochromator scanning mechanism, (See
footnotes to text,)
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The following observations may help 1ntetpret the sgectrum of Figure 9.

Emission in the 4400 A region results from the A%zt (0,0Y,0) « X 2y (0,0!,0)
vibrational band. The A%L? (0,0 « x%n (1, ol ,0) band has the same overall
symmetries of ground and excited states. Though no rotational analysis for
the X (1,0°,0) state is available, one_would expect its rotational constants
to be nearly the same as those for the Xzﬂ (0,01,0) state. Therefore, the
rotational branch structure of these two vibrational bands should be quite
similar. In particular, though minor differences might well occur, the
relative spacings and intensities of the bandheads and prominent lines from

N' = 31 should be about the same for the two vibrational bands. Thus if
spectra for both bands are available on the same wavelength scale, an overlay
of the two spectra should reveal similarities. (Note, of course, that the
pumped transition will 1lie directly under the laser line.) We have overlaid
transparencies of the spectra and compared them as described. This comparison
leads to the best agreement when one assumes the Q, branch line is pumped.
However, the assignment is not firm due to the C2 and grating ghost
interferences in Figure 9.

Because of the expected similarities in rotational structure for the two
vibrational bands of interest in the preceding pa§a§ra 8ne can Sompute
approximate positions of rotational lines in the A°L (? 0-,0) « X7 (1, ol ,0)
band by subtracting the energy of XZ“ (1, ol ,0), 1274 cm *, from the energy for
the corresponding rotational line in the A22+ (0,07,0) + X2n (0,01,0) band.
This has been done_for all possible lines having N'=31. The result is shown
in Table 1. The a2L* (0,00 Q¢ * x%r (0,01,0) 1line positigns were obtained
from the absorption spectra. The 4657.94 A laser 1ine corresponds to an
energy of 21463 cm -1, This clearly matches the estimated Q23l position best,
in agreement with the overlay result. The slight discrepancy is not
unreasonable considering the assumption of equal rotational constants for the
two vibrational levels. However, the assignment of transition type as Qp.1s
still not entirely conclusive. The error limits on measurements of the X n
(1, 0! ,0) energy are large enough that assignment of the pumping transition to
the P,32 or R,30 cannot be ruled out. Though assignment to other than the Qa
branch seems unlikely, a firm identification awaits further study.

The prominent lines in the spectrun in Figure 5 also yield information
about energy transfer in the excited NCO. As shown, the Q;31 and 0231
intensities are nearly equal. Since one would expect nearly equal rotational
line strengths for these transitions, these intensities indicate approximately
equal densities in the F| and F, spin components for N! = 31, in contrast to
observations made for the AL+ state of OH in a flame. These equal
populations may arise either by excitation to one spin state followed by rapid
spin state redistribution with retention of N' identity, or by equal pumping
of two spin states via overlap of main and satellite branch transitions. A
calculation of the excited state spin-splitting using the spin-rotation
constant of Ref. 6 ylelds F|31 - F,31 = 0.016 + 0.005 cm !, Since the
Doppler width at the measured flame temperature " of 2500 K is about 0.13 cm l,
the main branch and satellite transitions are almost completely overlapped
under these conditions. If pumping occurs via the o branch and its
satellite, both having similar transition strength,” then the two spin states
will be equally populated by laser excitation. The other two possibilities
for the pumping transition, however, favor collisional spin-state
relaxation. Of these, the R, branch has no satellite and only one spin state
can be pumped directly. 5iscussed earlier, it is most probable pumping

24




TABLE 1. ESTIMATES OF NCO A + X SYSTEM LINE POSITIONS
IN 4658 A REGION?

Transition Type Known Position in Estimated Position in
(0,09,0) « (0,01,0) (em™1)  (0,0%,0) « (1,01,0) (em”!)

%p,,33 22679 21405
P2+PQ1232 22705 21431
Q*+ ¥R 531 22729 21455
R,30 22753 21479
P32 22779 21505
Q.+, 31 22804 21530
R +Rg,,30 22829 21555

SRy,29 22852 21578

Cknown line positions were obtained from Ref. § and 6. Estimated line
positions were obtained by subtracting the measured X% (1,01,0) vibrational
energy from the knowm positions ae deeeribed in the text. The argon 4658 j
laser line corresponds to an energy of 21463 em™i. :
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branch where the strength of the main branch and satellite

occurs in the Q.
transitions diféer by a factor of about 3. Therefore, the interpretation of
spln-state relaxation is favored.

In scans of fluorescence from a2r* (O,OO,?6, besides the bands in the
4400 A and 4658 A region, Bondybey and Bnglish' * also observed weaker
emisgions near 4485A& and 4820 A. These were attibuted to emission to X
(0,1°,0) and X (0,0",1), respectively. (brrections for detection system
sensitivity vs wavelength were not made in their study nor in the present
work, but the wavelength range scanned is small enough that the sensitivity is
not expected to change drastically. (In particular, sensitivities for the
PMT's used in the two studies change less than 15% over the region of
interest,) In the earlier study10 an unknown gain change was made between
4400 and 4485 A. We have measured the Intensity ratio for emission to X°w
(0,01,0) and x2c* (0,10,0). Mmbining this with the earlier ratios for the
three hot band intensities leads to an estimate of the intensity ratio between
the two strongest bands. The resulting intensity ratio for X2 (O,OO,O) to X°m
(1,01,0) 1s about 2.8 : 1.* Emission to XZm (0,01,1) could not be found using
the 1 m monochromator. This may be due to two factors. First, the emission
may be too broad to be seen easily at high resolution. Second, the laser
power and performance were deteriorating in the late part of this study when
the most diligent attempts to find the band were made. However, a very weak
and rather broad doublet was observed with the 25 cm monochromator - OMA
system which could be attributed to this band. Though C, fluorescence
interferes with exact measurements in the 4658 A region, the intensity ratios
for the three hot bands are at least in qualitative agreement with Ref. 10.

22+

One fluorescence spectrun from those with broad spectral envelopes shown
in Figure 4 was selected for further study. The fluorescence intensity from
the 4765 A pump line was the strongest, about 0.2 times that from the 4658 A
line. A spectrum at 0.60 A FWHM resolution taken with the 1 m monochromator
is shown in Figure 10. The spectrun is noiser than for that from 4658 A
(Figure 5) due to the lower signal intensity. Nonetheless, the same seven
bandheads as seen with the 4658 A laser line may still be readily
identified. I addition, several other bandheads and/or peaks at shorter
wavelengths are present in Figure 10. %t+is resdily seen from Ref. 10 that
these emissions do not arise from the AL" (0,07,0) level. They may arise
from excitation to some high vibrational level followed by vibrational
relaxation populating a number of lower levels. Alternatively, the laser line
could excite high-lying rotational levels from several vibrational levels in
the ground state. Thus, the excitation line could populate more than one
vibrational level in the A state resulting in a rather complex spectrum. Or,
some combination of these two effects may take place. If significant
vibrational relaxation does occur, it would seem to indicate that Hy0, €Oy, Hy

% .
In a private communication, V.E. Bondybey informed us that though exact

information was lost, the approximate gain change should lead to an
intensity ratio of about 2 or 3:1, in good agreement with our result.
Approximate intensity ratios for the other two bands may be derived from the
fluorescence scan in Ref. 10. The results are also in reasonable agreement
with preliminary results of a more careful determination to appear in

Fef. 12b.
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or CO (major species present under rich flame conditions) must be the
collision partnsr+since Sullivan et 8112 have found that vibrational
relaxation of AL" NCO by N, and 0, is very slow. The doublet observed at
about 4371 A in Figure 10 is rather intriguing. The sharpness of these peaks,
similar in width to the prominent lines of Figure 5, suggests that perhaps one
or both of them are due to emission from an initially pumped N' level. Higher
resolution scans would be necessary to evaluate this possibility. We have not
pursued this type of study at present.

B. NCO Density in the Flame

The NCO fluorescence may be readily used to map out relative densities in
the flame. This was done using the 4658 A excitation line since_this
excitation 1s the best understood. Also, the line excites the A tt (0,00,0)
level so that vibrational transfer to lower levels will not complicate data
analysis. The technique is explained in this section.

Two basic assumptions must be made in order to make relative density
measurements., First, one must assume the relative quenching rate is nearly
constant throughout all positions of interest in the flame. At first glance,
this assumption seems unreasonable for the flame front because the composition
and temperature undergo drastic changes in that region. However, several
recent studies i? if§t§6quenching rates are nearly constant in flame fronts,
at least for OH.“"*""? As will be seen shortly, the temperature is fairly
constant over much of the region of interest. Also, one typically finds for
premixed flames that the major species composition approximates that in the
burnt gases very early in the flame front, Therefore the assunption of
constant quenching rates is not unreasonable. The second basic assumption is
that the X state of NCO is in thermal equilibrium at the flame temperature.
One then calculates the relative density using the familiar Boltzmann
equation. These assunptions lead to the very simple proportionality

n o« FQ/(2J" + 1) exp (-Ey- ,J»'/kT) (1)

where n is the density of NCO, F the fluorescence intensity, Q the molecular
partition function, J" 1s the angular momentum quantum number for the ground
state and Ene J" is the energy of the ground rotational state. For the
present resultfs we assuned the 4658 A line pumps the Q,31 transition for which
the ground state is N” = 31, J” = 30.5. However, even if the assignment of
rotational branch for the pumping transition is incorrect, the factors in Eq.
(1) still lead to the same relative density profiles. However, the estimate
of absolute density, to appear later, would be affected. If the R, or P
transition is actually pumped at 4658 A, our estimate of the rotational ine

strength 1s about a factor of 2 too high so that the calculated density would

25J.H. Bechtel and R.E. Teets, "Hydroayl and Its Concentration Profile in
Methane-Air Flames," Applied Opt., Vol. 18, p. 4138, 1979.

28 .7. Cottereau and D. Stepowski, "Laser-Induced Fluorescence Spectroscopy
Applied to the liydroxyl Radical in Flames," Laser Probes for Combustion
Chemistry, edited by D.R. Crosley, American Chemical Society Symposium
Series 134, Washington, DC, p. 131, 1980.

28

RN R R i i A e e A T A A R S e A A i A T AN A CEE O S




TUTTYTTY

Chusk A e st i Aot St Ml LA il I AT A S M 2 A e e e i T SR A

be a corresponding factor too low. E,u. g in Eq. (}) was estimated by using
the measured?»10,12 xZy (1,01,0) energy of 1274 cm™' and assuming rotational
constants are nearly equal in the x2n (0,01,0) and (1, 0l,0) states. The spin-
orbit splittingS'6 of ~ 98 cm™! in X was also considered.

The relative fluorescence intensity profiles were measured using the
25 cm monochromator - OMA system. The strong fluorescence for the entire band
system between 4300 A and 4425 A was integrated to yield the intensities vs
burner position. Temperature measurements were made using the spontarneous
Raman signal from the Stokes rotational-vibrational Q-branch of N,. These
Raman spectra were fitted using a multiparameter least squares computer
program developed to extract temperature and N, concentration from the data.
The standard deviation in flame temperatures is about 1%X. The Raman methods
are discussed in more detail in Ref. 13, The resulting temperature and
relative density profiles are shown in Figure 11. The adiabatic flame
temperature, calcula%ed using the NASA-Lewis thermodynamic equilibrium code of
Svehla and McBride, is also indicated in the figure. Note that the measured
peak temperature and adiabatic flame temperature are equal within experimental
error, indicating minimal heat losses to the burner. The zero point on the
relative position scale in Figure 1] corresponds to the top of the burner body.
(See Figure 1.) The minimum distance between the top of the knife edges and
the top of the burner body, where the measurements were taken, is 2.50
0.25 mm, The steep concentration and temperature gradients at about 1.0 -
1.5 mm indicate the position of the leading edge of the flame reaction zone.
Therefore, the reaction zone must extend about 1.0 - 1.5 mm below the top of
the knife edges under our flow conditions. (This agrees reasonably well with
a visual inspection of the luminous flame zone position.)

Besides the NOO and temperature profiles, relative a3ﬂ and xzn CN
profiles measured at the same time"- are shown for comparison in Figure 11.
The density profiles are almost indistinguishable from the relative
fluorescence intensity profiles (not shown), indicating the correction in Eq.
(1) 1s small. It should be noted that the relative concentration profiles are
only meaningful for individual compounds vs position; that is, the absolute
peak concentrations of the three compounds are not accurately known. Figure
11 shows that the Cy, N and NCO concentrations all decay rapidly outside the
reaction zone of the flame.

As discussed in Ref. 15, a very rough estimate of the absolute peak
densities in Figure 11 may be made using three major assumptions. Briefly,
one assumes: (1) The laser line is Doppler broadened at about room
temperature.* (2) The molecular transition is Doppler broadened at the flame
temperature of about 2500 K. (3) The quenching rate of excited molecular

27R A. Svehla and B.J. MeBride, "Fortran IV Computer Program for Calculation

of Thermodynamic and Transport Propertiee of Complex Chemical Systems," NASA
TN D-7056, 1873 (1981 program version).

Actually,the laser %tneshape probably consists of about 20-30 cavity modes
within the 0.04 em™* Doppler width.

©
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Figure 11. Measured Temperature and Relative Density Profiles of NCO, CN,

and a3nu C2 in a Slightly Rich CH4/N70 Flame. The calculated adiabatic flame
temperature is also indicated. Relative densities may not be compared between
compounds in this figure because curves for the individual compounds were only
< plotted with large separations for ease in visualization. Estimates of the

. absolute peak densities are given in the text.
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species_is about } X 109 sec"l, a typical value for atmospheric pressure
flames. Furthermore, measurements of NOO quenching rates by 0g and Ny,
corrected to our temperature and pressure, indicate 1 X 107 sec is a
reasonable estimate to select. The calculation also requires some knowledge
of the overlap of the laser pump line and the molecular transition., Data was
available to estimate this quantity for C, and CN, but of course not for NCO
since exact line positions are unknown. %herefore, the calculation for NCO
assumed perfect overlap. Thus, only a lower limit for the density was
computed. Finally, the fluorescence intensity was calibrated against the
Raman N, signal from room air using the same laser lines as for fluorescence
- excitation., Calibration in this manner has two advantages in that it obviates
the need for an absolute laser power or a sampling volume measurement._ Using
the estimatid ovgrlap for and C§ leads to peak densities of 2 x 10 cm™3
and 3 x 10! » respectively, Spectroscopic data used for these
estimates 1s discussed in Ref. 15. For NCO, the further necessary spechal
data is the relative intensity of vibrational bands associated with A s
(o, O ,0) and the radiative lifetime of this state. These may then be used to
calculate Einstein coefficents. The estimated relative vibrational band
intensities were obtained as discussed in the previous section. The
- fluorescence lifeEime used was 400 nsec obtained from gas phase
. measurements. The lower limit for NCO density thus calculated is 3 x
o 1014 cm 3. pue to the various assumptions made in the absolute density
calculations, it is difficult to place error limits on these quantities. The
-, major source of random error in the calculated densities is in the spectral
e overlap because the densities are quite sensitive to these quantities. Of
course, the lower limit for NCO does not depend on this quantity at all., Most
probably the largest source of systematic error is in the assumed quenching
rate of 1 x 107 sec™! which is probably only good to within about a factor of
five. The densities are therefore believed to be good to within factors of
about 10 for CN, 20 for a Ty, Cp and 5 for the lower limit for NCO. These
- estimates should be useful in determining whether chemistry of these trace
- species must be considered in CHA/Nzo flame models.
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Attempts were made to find C,, CN and NCO in a slightly rich CH,/air
flame (exact composition unknown). The sensitivity limits were for densities
- about a factor of 100 lower than in the CH,/N,0 flame., Fluorescence was found
o for C,, but not for CN or NCO. This result indicates a probable difference in
- the nftrogen chemistry for the two flames. Earlier studies of OH and, 1in
particular, NH concentrations in the stoichiometric flames led to the same
conclusion.?? This should not be extremely surprising because the N - N bond
strength in N, is much stronger than in N,0 making N, more chemically inert.
We have not attempted to analyze details of the chemistry at present.

IV. CONCLUSIONS

- Laser excited fluorescence from the A - X system of NCO has been
'.5 . identified 1in a rich atmospheric pressure CH,/N,0 flame using an argon laser
SN pump source. LEF was obtained for all nine available laser lines ranging from
4545 A to 5145 A, The hot flame source of NCO aids in the pumping scheme

26p gimilar aseumption ie made in D.R. Croeley, "Collisional Effecte on Laser-

Induced Fluorescence Flame Measurements,” Opt. Eng., Vol. 20, p. 511, 1981.
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since all of the available laser lines must pump vibrational hot bands of the
NCQO to the red of the main 4400 A band. The 4658 A laser line appears to be
by far the most useful of the availgble lines for diagnostic purposes., This
line pumps in the A r*t (0,0%,0) + X“n (1,01,0) band. It appears that this is
why the LEF is most intense for this pump line. NCO is pumped to the N' = 3]
excited level by the 4658 A line. However, the rotational branch of the
pumping transition could not be firmly established. At present, the Q23l
appears to be the most likely candidate.

The 4658 A pump line was used to measure accurate relative density
profiles in the CHA/NZO flage. }n addition, a lower limit for the absolute
number density of ~ 3 x 1014 cn™3 was estimated using the available
spectroscopic data and an assumed quenching rate. The argon laser source has
proven to be quite useful for flame measurements of NCO. It should thus be
useful for other hot sources of NCO in which cw measurements are desired.
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USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:

Telephone Number:

Organization Address:
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